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Abstract 
 
A technique for formulation of the objective and constraint functions with uncertainty plays a crucial role in robust 

design optimization. This paper presents the first application of interval methods for reformulating the robust optimiza-
tion problem. Based on interval mathematics, the original real-valued objective and constraint functions are replaced 
with the interval-valued functions, which directly represent the upper and lower bounds of the new functions under 
uncertainty. The single objective function is converted into two objective functions for minimizing the mean value and 
the variation, and the constraint functions are reformulated with the acceptable robustness level, resulting in a bi-level 
mathematical model. Compared with other methods, this method is efficient and does not require presumed probability 
distribution of uncertain factors or gradient or continuous information of constraints. Two numerical examples are used 
to illustrate the validity and feasibility of the presented method.  
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1. Introduction 

Robust design optimization is a methodology to ob-
tain an optimal design which is minimally sensitive to 
the uncertainties inherently present in the design 
process and parameters [1, 2]. To meet the need of 
higher product quality, engineers have increasingly 
applied optimization under uncertainty as an alterna-
tive to deterministic optimization. Robust design op-
timization is one of the representative methods under 
uncertainty. In this field, researchers have shown 
great enthusiasm in how to modify the optimization 
formulation for accounting for the uncertainties, 
which leads to two issues: objective robustness and 
constraints robustness. Objective robustness is typi-
cally achieved by simultaneously optimizing the 

mean performance and minimizing the variation of 
performance. Constraint robustness is to leave exact 
room for considering the variation of design variables 
by revising the formulation. 

According to the characteristics of uncertainties 
and the way they have been treated, robust design 
optimization can be classified into two categories: 
probabilistic and non-probabilistic. Probabilistic 
methods have been a relatively mature and significant 
portion of the literature in this area, where the uncer-
tainty is modeled into the optimization formulation 
using the theory of probability, and maintain design 
constraint satisfaction at an expected probability level. 
The common properties of the probabilistic method 
are that they require the probability distribution func-
tions of uncertain factors as input [3-7]. The issue is 
that multidimensional integration has been involved 
in this field, and generally, a large amount of statistic 
information might be unknown or difficult to obtain. 
And recent research has shown that probabilistic re-
sults are very sensitive to the distribution data, which 
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means that a slight error of the statistical data may 
lead to a great deviation of the results.  

The non-probabilistic approaches do not need the 
presumed probabilistic information. However, these 
methods have some limitations, such as their objec-
tive or constraint functions must be differentiable 
with respect to the parameters or assume that the ob-
jective or constraint functions can be treated as linear 
with respect to the parameter variations, which might 
not hold for large variations [8-10]. References [11-
13] analyze the mapping relationship between the 
parameter variation region and objective or constraint 
sensitivity region one by one, and obtain the variation 
quantity, then add the variation into the original for-
mulation as a penalty for the robust design optimiza-
tion, which does not need the gradient information of 
constraints. However, the analysis process is compli-
cated and the optimal solution might be under- or 
over-conservative.  

In view of the above-mentioned shortcomings, the 
aim of this paper is to develop a new robust optimiza-
tion method to address some of deficiency. In recent 
years, the interval analysis method, which was first 
presented by Moor in the mid-1960s [14] and the 
linear interval equations and nonlinear interval equa-
tions have been resolved [15-17], has been developed 
to model the uncertainty in uncertain optimization 
problems, which only needs the upper and lower 
bounds of the uncertainties, and that is easier to obtain 
in actual engineering, not necessarily knowing the 
probability distributions or membership functions. 
This is the inspiration source and motivation of this 
paper.  

This paper presents the first application of interval 
methods for reformulating the robust optimization 
mathematical model considering uncertainties. When 
the uncertainties are modeled as interval numbers, the 
related objective and constraint functions will also be 
interval functions. This paper combined interval ex-
tension of function algorithm and an order relation of 
interval number algorithm to evaluate the new 
changed upper and lower bounds of the objective and 
constraint functions under uncertainties, then convert 
them into equivalent deterministic form to obtain the 
optimum solution with any specified robustness and 
result in a bi-level mathematical model. The proposed 
method is capable of evaluating the robustness and 
achieving an optimal solution with any acceptable 
robustness levels, efficiently. Compared with other 
methods, our method is efficient, and does not require 

presumed probability distribution of uncertain factors 
or gradient or continuous information of uncertain 
factors; more information of the optimization results 
can be obtained and it is suitable for objective robust-
ness and constraints robustness.  

The remainder of this paper is presented as follows. 
In Section 2, the bi-level mathematical model based 
on interval analysis is developed. Section 3 illustrates 
our approach through two numerical examples, and 
concluding remarks are given in Section 4.  

 
2. Robust design optimization problem formu-

lation 

In this section, firstly, a conventional robust opti-
mization problem is shown and the relevant interval 
definition and terminology are introduced, followed 
by the interval mathematics. Then the reformulation 
of the objective function, inequality and equality con-
straint functions, based on interval mathematics, are 
developed. Finally, a bi-level mathematical model is 
constructed.  

 
2.1 Interval mathematics 

A general robust design optimization problem can 
be formulated as follows: 

 

min max

min ( , )
subject to: ( , ) 0, 1,2,...

( , ) 0, 1,2,...
i

j

f
g i n
h j m

  ≤     =

                =    =

               ≤ ≤

X P
X P
X P

X X X

 (1) 

 
Where f(X,P)is the objective function to be optimized, 
and X=[x1,x2,…xk] is the vector of design variables 
which is to be assigned by the designer. Xmin and Xmax 

are the minimum and the maximum acceptable values 
for design variable vector X. gi(X,P) is the ith ine-
quality constraint function, and n is the number of 
inequality constraints. hj(X,P) is the jth equality con-
straint function, and m is the number of equality con-
straints. P=[p1,p2,…pt] is the t-dimensional uncertain 
parameter vector, which is used to describe the uncer-
tain effects. If the probabilistic distributions of all 
uncertain parameter variables are known, the robust 
design optimization problem can be solved by the 
method introduced in Refs [3-7]. However, in some 
cases, the probabilistic characteristics of the uncertain 
parameters are unknown, and the only known infor-
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mation is the interval of the uncertain parameters, 
namely [14]  

 
L U≤ ≤P P P  (2) 

 
or the component form 

 
, 1,2,...L U

i i ip p p i t≤ ≤ =           (3) 

 
Where PU=[p1

U,p2
U,…pt

U] and PL=[p1
L,p2

L,…pt
L] are 

the upper and lower bounds vector of the uncertain-
but-bounded parameter vector P=[p1,p2,…pt], respec-
tively. The relationship between the interval number 
and the real number can be written as: 

 

1 2[ , ,..., ] [ , ]

[ , ], 1,2,...

I I I I L U
t

I L U
i i i i

p p p or

p p p p i t

∈ = =

∈ = =

P P P P
  (4) 

 
Eq. (4) can be put into the more useful form as fol-
lows: 

 
[ , ] [ 1,1]I c w c w c w= − + = + −P P P P P P P    (5) 

 
Where Pc and Pw and denote the middle vector and 
the radius vector of PI, respectively. It follows that 

 
( ) / 2c L U= +P P P                 (6) 
( ) / 2w U L= −P P P                   (7) 

 
Then the uncertain-but-bounded parameter vector P 
could be denoted as the following vector form: 

 
, [ 1,1]

, [ 1,1] , 1,2,...

c w

c w
i i i i i

or

p p p p p i t

δ δ

δ δ

= + ∈ −

= + ∈ − =

P P P P P
  (8) 

 
An interval function is an interval-value function of 

one or more interval arguments. In Eq. (1), assume 
that F(X,PI)is the interval value function of t-
dimensional interval vector PI. Then the real function 
f(X,P), which is the real function of t-dimensional 
real variables P, satisfies the following properties: 

 
( , ) ( , )If F=X P X P                   (9) 

 
F is known as the natural interval extension of f. 

In Eq. (1), the real variables P=[p1,p2,…pt] and the 
real arithmetic operations can be replaced with the 

corresponding interval variables P=[p1,p2,…pt] and 
interval arithmetic operations, respectively, to obtain 
the natural interval extension functions F(X,PI), 

ig ′ (X,PI) and jh ′ (X,PI)of original real-valued objec-
tive and constraint functions f(X,P), ig ′ (X,P) and 

jh ′ (X,P). 
An optimization problem with interval numbers 

always needs to rank intervals to obtain the minimum 
or maximum one. The rank of interval numbers 
means that an interval number is better than another 
but not that one is larger than another. A nonlinear 
interval number programming called an order relation 
is often used to rank the intervals. Ishibuchi and Ta-
naka [16] used ≤mwto define an order relation between 
interval numbers AI and BI in the minimization prob-
lem as follows:  

 
,

,

I I c c w w
mw

I I I I I I
mw mw

A B if A B and A B

A B if A B and A B

⎧ ≤ ≥ ≥⎪
⎨

< ≤ ≠⎪⎩
 (10) 

 
Eq. (10) means that interval BI is better than AI only if 
the midpoint and radius of BI are both smaller than AI. 

 
2.2 Objective function formulation  

Because the uncertainty factors are modeled as in-
terval numbers, the real-valued objective function is 
replaced with the equivalent interval-valued objective 
function. The process of searching the minimum in-
terval function value always keeps the relatively mi-
nor one through comparing between two interval 
functions until finding the minimum one. Based on 
the above-mentioned interval algorithm, the mini-
mum interval value of the objective function under 
uncertainties means not only the smallest midpoint 
but also a smallest radius. Thus, the objective func-
tion with uncertainty in Eq. (1) can be transformed 
into a two-objective optimization problem as follows: 

 
min ( , ) min ( , ) min( , )

1 ( ( , ) ( , ))
2
1 ( ( , ) ( , ))
2

I c w

c L I U I

w U I L I

f F F F

F F F

F F F

= =

= +

= −

X P X P

X P X P

X P X P

 (11) 

 
For a specific optimal solution X, F(X,PI) is an in-

terval number, and its bounds FL(X,PI) and FU(X,PI) 
can be obtained: 
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{ }

( , ) min ( , )

( , ) max ( , )

L I

P
U I

P

L U

F f

F f
∈Ω

∈Ω

=

=

∈Ω = ≤ ≤

X P X P

X P X P

P P P P P

           (12) 

 
Through Eq. (12), the uncertain vector PI can be 
eliminated, thus the two objective functions in Eq. 
(11) become deterministic. 

The two objective functions in Eq. (11) have the 
practical significance of minimizing simultaneously 
the mean value and the deviation of the objective 
function caused by uncertainties, respectively. 
Through minimizing the variance of the objective 
function caused by the uncertainties, the optimal de-
sign can make the objective function insensitive to the 
perturbation of the uncertain factors. Therefore, ob-
jective robustness can be guaranteed. Note that in 
actual engineering, the designers are not always seek-
ing the smallest variation of the objective function but 
the smallest objective average value in certain extent 
perturbation range. If the perturbation range ∆f is 
presumed, the two objective functions in Eq. (11) can 
be converted into a single objective function and an 
inequality constraint function as follows:  

 
min ( , ) min( )

:

c

w

f F

subject to F f

=

≤ ∆

X P
             (13) 

 
When the allowable variation range of objective func-
tion is known, Eq. (13) is an alternative formulation 
with practical significance in decreasing the cost of 
manufacturing. 

 
2.3 Inequality constraint function formulation  

In an engineering design problem, an optimal solu-
tion without considering uncertainties is usually lo-
cated at or near the boundary of active constraints. A 
slight perturbation of the uncertainties may change 
the original constraint boundary, and the optimal so-
lution evaluated from the conventional method may 
violate the new constructed constraints. We will take 
the ith constraint gi to depict this situation as shown in 
Fig. 1. ig ′ is the transformed new constraint of the 
original constraint ig . The shadowed region is the 
added infeasible region by the variation of the con-
straint gi. In Fig. 1(a), both optimum points xkmin and 
xkmax obtained from the traditional method lie out of  

  
(a) 
 

 
(b) 
 

   
(c) 

 
Fig. 1. The feasible robustness of the ith constraint gi. 

 
the feasible region; however, in another Fig. 1(b), 
xkmin still satisfies the new constructed constraint with 
the variation caused by the uncertainties; unfortu-
nately, xkmax violates the new constraint boundary. On 
the contrary, both optimal solutions in Fig. 1(c) lie in 
the feasible region.  

Constraint robustness is that the feasibility of the 
constraints is guaranteed even with the existence of 
the uncertainties. Because the uncertain factors are 
modeled as the interval numbers, the new constructed 
constraints will be interval functions. It is well known 
that, in robust design optimization, the constraint 
intervals only need to compare with zero; the part that 
is smaller than zero implies feasible. However, the 
part that is larger than zero represents the failure of 
robustness. References [16-17] proposed a construc-
tion method to compare the two intervals, which are 
called the possibility degree I IA B

P
≥

 or I IB A
P

≥
. When 

one of the intervals AI or BI degenerates into a real 
number ε, we can obtain the possibility degree be-
tween the interval-valued constraint ig ′ and the real 
number, such as the degree

igP ε′≤ , which can be writ-
ten as follows: 

 
0

( ) ( ) 0

1
i

L
i

L U L L U
g i i i i i

U
i

g

P g g g g g

g
ε

ε

ε

ε
′≤

⎧ ′ ≥
⎪⎪ ′ ′ ′ ′ ′= − − ≤ ≤⎨
⎪ ′ ≤⎪⎩

 (14) 

 
In the same way, 

igP ε′≥ can also be obtained: 
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1

( ) ( ) 0

0
i

L
i

U U L L U
g i i i i i

U
i

g

P g g g g g

g
ε

ε

ε

ε
′≥

⎧ ′ ≥
⎪⎪ ′ ′ ′ ′ ′= − − ≤ ≤⎨
⎪ ′ ≤⎪⎩

 (15) 

 
It can be found when ε=0, 0 ( [0,1])

igP ′≤ ∈ implies 
the constraint robustness called robustness index. 
When the robustness level does not satisfy the robust-
ness requirement, we need to take some approaches to 
shift the constraint side such that the combinations of 
the uncertain variables for each constraint still result 
in a feasible design. The quantity of shift is deter-
mined by the robustness index calculated through Eq. 
(14). 0 1

igP ′≤ = represents that the optimal solution 
obtained from the original optimization method com-
pletely satisfies the feasibility robustness requirement; 
hence the formulation of inequality constraints can 
maintain unchanged gi(X,P)≤0. While 0 1

igP ′≤ ≤ im-
plies that the optimal solution evaluated from the 
original optimization method satisfies the new trans-
formed constraints with the degree 0igP ′≤ ; obviously, 
( 01

igP ′≤− ) represents the degree that the optimal solu-
tion violates the new constructed constraint. The 
quantity of shift from the original constraint should be 
the part that does not satisfy the feasibility robustness 
requirement, which can be expressed 
as 02 (1 )

i
w

i gg P ′≤
′ × − , where 2 w

ig′ is the interval width 
of the new constructed inequality constraint ig ′ , 
which can be calculated similar as wF . Therefore the 
original inequality constraint is reformulated as fol-
lows: 

 
0( , ) 2(1 ) 0

i
w

i g ig P g′≤ ′+ − ≤X P  (16) 
 
The shifted inequality constraints in Eq. (16) com-

pletely satisfy the robustness requirement. In the real 
world, the amount of shift needed for an inequality 
constraint can be related to the practical needs in the 
design. In some circumstances the design objective is 
of most concern and the constraints are allowed to be 
violated to a certain extent. A relatively lower robust-
ness level can be selected, and in other situations the 
constraints are most important; then a relatively large 
robustness level should be specified. So a mathemati-
cal model with any satisfactory level needs to be for-
mulated for the inequality constraints. Assume that φi 
is the specified robustness index of the ith inequality 
constraints by the decision maker. Besides, all the 
inequality constraints can be given the same φ, or 
completely different φi according to the preference of 

the decision maker and the practical needs. Therefore, 
the inequality constraints in Eq. (1) can be trans-
formed into the following formulation with a speci-
fied robustness index: 

 

0 , [ , ], 1,2,...
i

L U
g i i i iP g g g i nϕ′≤ ′≥ = =      (17) 

 
Note that Eq. (16) is the collapsed form of Eq. (17) 
when the robustness index of all the constraints speci-
fied by the decision maker is equal to one 0 1

igP ′≤ ≥ , 
so the inequality constraint can be summarized in one 
form as Eq. (17). 

 
2.4 Equality constraint functions formulation  

Reference [18] categorizes equality constraints into 
two types: 1) those that must be satisfied regardless of 
the uncertainty present, and 2) those that cannot be 
satisfied because of the uncertainty. The first type can 
be removed through substitution [19]. In this paper 
we put our emphasis on the second type. Similarly, as 
the inequality constraints, because the uncertain fac-
tors are modeled as interval numbers, the equality 
constraints are also interval functions. The difference 
between the inequality and equality constraints is 
that the former only need to focus on shifting the 
components larger than zero, and the latter one 
should pay attention to all the components that are 
not equal to zero. The reformulation process of the 
equality constraints is similar to the inequality con-
straints. The interval equality constraint function 

[ , ] 0L U
j j jh h h′ = =  can be transformed into the fol-

lowing form: 
 

( , )L U
j j jh h h′≤ ≤X P                 (18) 

 
Eq. (18) can be converted into the following two ine-
quality constraints: 
 

( , )

( , )

U
j j

L
j j

h h

h h

⎧ ′ ≤⎪
⎨

′⎪ ≥⎩

X P

X P
                 (19) 

 
Assuming that φj is the specified robustness index of 
the two inequality constraints, Eq. (19) can be 
changed into the following forms: 

 

, [ , ], 1,2,...
U

j j

L
j j

jh h L U
j j j

jh h

P
h h h j m

P

ϕ

ϕ

′ ≤

′ ≥

≥⎧
⎪ ′ = =⎨ ≥⎪⎩

 (20) 
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The possibility degrees U
j jh h

P ′ ≤
and L

j jh h
P ′ ≥

 can be 
calculated through Eqs. 14 and 15. Thus, the uncer-
tain equality constraint has been converted into two 
deterministic inequality constraints. 

 
2.5 Bi-level robust optimization model  

Incorporating all of the above-mentioned reformu-
lations, the conventional robust optimization model in 
Eq. (1) is transformed into the following bi-level 
mathematical model. 

As shown in Fig. 2, the bi-level mathematical 
model of robust design optimization based on interval 
analysis consists of two steps. Firstly, optimize the 
objective function f subject to conventional con-
straints to get a solution x0 in the space of x in upper-
level subproblem, of which the variables are x; sec-
ondly, transfer x0 to the lower-level subproblem to 
estimate the value of the middle vector and radius 
vector of the intervals( , ,I I I

i jF g h′ ′ ) in uncertainty 
space, of which the variables are PI; Then send back 

,c w L U L U
i i j jF F h h′ ′ ′ ′, ,g ,g , to the upper-level problem, 

and then the whole optimization continues until the 
upper-level problem converges to an optimum solu-
tion. It is notable that in a lower-level problem the 
aim is only to calculate the interval values and meas-
ure the robustness index for a particular solution x0; 
therefore, x0 is kept fixed in the lower-level subprob-
lem. 

 

 
 
Fig. 2. Bi-level mathematical model of robust design optimi-
zation based on interval analysis. 

3. Numerical examples 

In this section the present method is applied into 
two examples to demonstrate the procedure. The first 
example is a mathematical problem. The second one 
is an engineering application of a welded beam, 
which is compared with three other methods. As we 
shall see, the results verify the above-mentioned ad-
vantage of the proposed approach.  

 
3.1 A mathematical problem 

The mathematical model is given by: 
 

2 2
1 1 2 2 3 3

2 2
4 1 1 2 2 3 3

2 2 2
1 1 2 2 3 3 5

1 2 3

min ( , ) ( 1.5) ( 1)

. . 1

1 5, 3 6, 2 7,

f P X P X P X

s t P P X P X P X

P X P X P X P

X X X

= − + − +

≥ + + +

− + =

− ≤ ≤ − ≤ ≤ − ≤ ≤

X P

  

 
The problem involves three design variables 

X=[x1,x2, x3], five design parameters 
P=[p1,p2,p3,p4,p5]=[1.15,1,1.3,12.5,6.75], inequality 
constraint function and one equality constraint. Both 
the design variables and the design parameters have 
the uncertain factors. ∆p1=±0.15, ∆p2=∆p3=±0.1, 
∆p4=±2.5, ∆p5=±0.25, ∆x1=∆x2=∆x3=±0.1,  

Firstly, the uncertain optimization problem is re-
formulated into the bi-level robust optimization 
model according to Fig. 2. The single objective func-
tion with uncertainty is converted into two-objective 
functions. Considering that the linear weighted algo-
rithm is easy to implement, we adopt this method to 
integrate the multi-objective optimization. The value 
of the weighting factor is determined depending on 
the importance of objective value and robustness; in 
this example, we assume the two objective functions 
have the same preference and the objective functions 
have been normalized. The inequality and equality 
constraints are shifted into three inequality constraints, 
and all the constraints are specified the same robust-
ness φ. The robustness index of the three inequality 
constraints is denoted by R1, R2 and R3, respectively. 
The optimal solutions are listed in Table 1. 

As shown in Table 1, it can be found that with the 
increase of robustness index, the objective value is 
becoming worse, which means that the objective 
value and the constraint robustness are always con-
flicting, and they cannot be obtained meanwhile. A 
larger robustness index, which can guarantee the  
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Table 1. Optimal result under different robustness index φ. 
 
φ R1 R2 R3 the optimum f 

0.0 
0.2 
0.4 
0.6 
0.8 
1 

0.00 
0.20 
0.40 
0.60 
0.72 
0.88 

1.00 
0.77 
0.40 
0.60 
0.37 
0.23 

0.00
0.52
0.87
0.64
0.91
1.00

(1.64,1.08,1.70) 
(1.59,1.10,1.92) 
(1.52,1.18,2.14) 
(1.34,1.54,2.33) 
(0.28,1.37,2.63) 
(0.60,1.59,2.73) 

1.21
1.36
1.51
1.81
2.88
3.30

 
constraints are not violated in a larger possibility, 
always sacrifices a better objective value at great cost. 
Therefore, the decision maker needs to select an 
available tradeoff between the better optimum and the 
larger robustness. The results verify that our method 
can efficiently achieve an optimum with any specified 
robustness index. 

 
3.2 A welded beam optimization  

The well-known welded problem shown in Fig. 3 
was originally formulated by Ragsdell and Phillips 
[20]. The optimal problem is used to demonstrate our 
robust optimization method based on interval analysis. 
The design variables and the design parameters are 
modified to have the uncertain factors.  

The characteristics of the welded beam are as fol-
lows: the modulus of elasticity E is 30e6 psi (206.8 
GPa), and the modulus of shear G is 120e6 psi (82.7 
GPa). The allowable normal stressσd is 30000 psi 
(206.8 MPa) and the allowable shear stress τd is 
13600 psi (93.77 MPa). The length L of the unwelded 
beam is 14 inches (35.56 cm), and the force F acting 
at the tip of the beam is 6000 1b (26.6 kN); the costs 
of weld and beam material c1 and c2 are $0.1047/inch3 

($0.0064/cm3), $0.0481/inch3 ($0.003/cm3), respec-
tively. 

The problem is that beam A is designed to support 
a force F acting at the tip of it, and which is welded to 
a rigid support member B. The objective of this opti-
mal problem is to minimize the total cost of making 
such an assembly and the cost variation is smaller 
than 0.04(∆f≤0.04 ) and completely satisfies all the 
constraints on the shear stress, normal stress, deflec-
tion, and buckling load on the beam with the uncer-
tain effect. Through Fig. 3, it is not hard to define the 
four design variables: thickness of the beam (t), width 
of the beam (b), the weld (h), and length of the weld 
(l).  
The original formulation of the welded beam assem-
bly problem is shown directly as: 

 
 
Fig. 3. A welded beam assembly. 
 
Design variables: [ ]T

1 2 3 4, , ,x x x x=X [ ]T, , ,t b h l=  
Objective function:  

2
1 3 4 2 1 2 4min =(1+ ) ( )f c x x c x x L x+ +   

 
Subjective to:     
(1) Maximum shear stress constraint in weld 

( )
1/ 22 2

1 d( ) 2 cos ( ) 0g x τ τ τ θ τ τ⎡ ⎤′ ′ ′′ ′′= + + − ≤⎣ ⎦   

 
(2) Maximum normal stress constraint in beam 

( ) 2
2 2 1 d6 /( ) 0g x FL x x σ= − ≤   

 
(3) Bucking load constraint of the beam 

( ) 1
3 2

4.013 1 0
2

EI x EIg x F
LL

α
α

⎡ ⎤
= − − ≤⎢ ⎥

⎢ ⎥⎣ ⎦
  

 
(4) End deflection constraint of the beam 

( ) 3 3
4 1 24 /( ) 0.25 0g x FL Ex x= − ≤   

 
(5) Other constraints 

( )
( )

5 3 2

6 3

1 2

3 4

0

0.125 0

0.1 13, 0.1 2
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L and c1 have the uncertain factors, which are 
∆c1=±0.05, ∆L=±0.25, respectively. Due to manufac-
turing errors x1 and x2 vary by±0.01. The detailed 
formulation of the problem is given in [21]. We solve 
the problem with four methods, traditional optimiza-
tion method, the sensitivity region method [11], the 
maximum variation method [13], and the proposed 
method, which are denoted by M1, M2, M3 and M4 
for convenient description. Table 2 shows the list of 
the optimum designs obtained from the four methods, 
and the list of constraint robustness is shown in Ta-
ble 3, where R1, R2, R3, and R4 denote the robust-
ness of the four inequality constraints, respectively.  
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Table 2. List of optimum designs. 
 

 M1 M2 M3 M4 
f 
x1 
x2 
x3 
x4 

2.382 
8.292 
0.244 
0.244 
6.219 

2.487 
9.138 
0.248 
0.246 
5.461 

2.694 
8.328 
0.247 
0.176 
9.843 

2.710 
8.310 
0.248 
0.175 
9.973 

 
Table 3. List of robustness index. 
 

 M1 M2 M3 M4 

R1 
R2 
R3 
R4 

0.505 
0.504 
1.000 
0.517 

0.573 
1.000 
1.000 
1.000 

0.990 
1.000 
1.000 
0.875 

1.000 
1.000 
1.000 
1.000 

 
To compare the objective robustness in the four 
methods, 29 cases which are the randomly combina-
tions of L and c1 in their variation bounds are simu-
lated to evaluate the objective variation as shown in 
Fig. 4, where the dashed line is the maximum allow-
able variation value. Fig. 5 takes the fourth constraint 
as an example to show the variation of robustness 
index as a function of the interval width of the uncer-
tain parameters, where the abscissa is the multiple of 
the interval width of the uncertainties, and the verti-
cal coordinate is the first constraint robustness index. 
To compare the feasible space, we take the second 
inequality constraint as an example to show the 
original constraint curve and changed constraint 
curve in Fig. 5.  

From the above results, it can be found that the tra-
ditional method has the best optimal solution, but the 
constraint robustness and the objective robustness are 
the worst. On the contrary, the optimal solution ob-
tained from our method is the largest, but the con-
straint robustness and the objective robustness com-
pletely satisfy the requirement. Maximum variation 
method has similar results as our method, such as the 
optimum design and the objective robustness; how-
ever, the first and fourth constraint do not satisfy the 
demands. Sensitivity method has the larger constraint 
robustness, but the first constraint robustness was still 
violated, and the objective robustness is the worst. 

As shown in Table 3, all four constraint robustness 
indexes of our method are larger than that of other 
three methods. This shows that the constraint robust-
ness obtained by our method is the least sensitive to 
the uncertain factors. 

As shown in Fig. 4, in all 29 cases the objective 
variation of M3 and our method is less than that of the  
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Fig. 4. Objective robustness comparison in four methods. 
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Fig. 5. Objective robustness comparison with respect to the 
interval width variation of uncertain parameters. 

 
other two methods, while the M1 optimum violates 
the bounds in cases 1, 18, 26 and 29, and the M2 op-
timum violates the bounds in cases 1,14,18,19,26 and 
29. This shows that the objective robustness obtained 
by our method is the least sensitive to the uncertain 
factors.   

As shown in Fig. 5, from the fourth constraint, the 
general trend is that the constraint satisfaction prob-
ability decreases as the interval width increases of 
uncertain parameters. However, note that the pro-
posed approach provides higher constraint robustness 
than other three approaches. This shows that the con-
straint robustness obtained by our method is guaran-
teed in a higher level with respect to the variation 
range of uncertain parameters. 

As shown in Fig. 6, it can be found that as stated in 
section 2.2, by considering the uncertainties the feasi-
ble region is reduced and the presented method can 
estimate the change of constraints well. 
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Fig. 6. Feasibility illustration of the second constraint. 
 

4. Conclusions 

A bi-level robust optimization model, combining 
interval extension of function algorithm and an order 
relation of interval number algorithm, is presented to 
investigate the effects of uncertainties on the objec-
tive and constraint functions for robust optimization.  

The proposed method is applied to two numerical 
examples, and the first example verifies that our 
method can obtain an optimal solution with any speci-
fied robustness index. Through comparing with three 
other non-probabilistic methods, the second example 
confirms that the proposed method can guarantee the 
objective robustness and the constraint robustness. As 
interval mathematics is involved, only the upper and 
lower bounds of uncertainties are computed, so our 
computational process is more efficient. The result 
shows the advantages of our method are as follows: 
1) It is straightforward, 2) It does not require pre-
sumed probability distribution of uncertain factors or 
gradient information of constraints or continuous 
requirement, 3) It requires less computational effort, 
and 4) is suitable for objective robustness and con-
straints robustness. So the presented method is more 
suitable for large engineering structures or substitutes 
stochastic optimization methods to solve some uncer-
tain problems in which sufficient information on the 
uncertainty is unavailable. 
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